Equus Przewalskii


[1] Arnér E. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine? Experimental Cell Research. Exp Cell Res. 2010; 316 :1296-303.

[2] Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: Molecular Pathways and Physiological roles. Physiol Rev. 2014; 94: 739-77.

[3] Gromer S, Eubel JK, Lee BL, Jacob J. Human selenoproteins at a glance. Cell. Mol. Life Sci. 2005, 62: 2414-2437.

[4] Bellinger FP, Raman AV, Reeves MA, Berry MJ. Regulation and function of selenoproteins in human disease. Biochem. J. 2009; 422: 11-22.

[5] Brown KM and Arthur JR. Selenium, selenoproteins and human health: a review. Public Health Nutrition. 2001; 4: 593-599.

[6] Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigó R, Hatfield DL, Gladyshev VN. Composition and evolution of the vertebrate and mammalian selenoproteomes. PlosOne. 2012; 7: 1-18.

[7] Johansson L, Gafvelin G, Arnér E. Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta. 2005; 30:1726.

[8] Elias S, Arnér E. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res. 2010; 316: 296-1303.

[9] Li F, Lutz P, Pepelyayeva Y, Arnér E, Bayse C, Rozovsky S. Redox active motifs in selenoproteins. Proc Natl Acad Sci USA. 2014; 111: 6976-81.

[10] Lu J, Holmgren A. Selenoproteins. J. Biol. Chem. 2009, 284: 723-727.

[11] Turanov A, Lobanov A, Hatfield D and Gladyshev V. UGA codon position-dependent incorporation of selenocysteine into mammalian selenoproteins. Nucl. Acids Res. 2013; 41: 6952-6959.

[12] Mariotti M, Lobanov AV, Guigó R, Gladyshev VN. SECISearch3 and Seblastian: new tools for prediction of SECIS elements and selenoproteins. Nucleic Acids Res. 2013; 41: 149-55.

[13] Myka J.L., Lear T.L., Houck M.L., Ryder O.A. Bailey E. FISH analysis comparing genome organization in the domestic horse (Equus caballus) to that of the Mongolian wild horse (E. przewalskii). CytogenetGenome Res. 2003; 102: 222-225.

[14] Williams GR, Bassett JH. Deiodinases: the balance of thyroid hormone: local control of thyroid hormone action: role of type 2 deiodinase. J. Endocrinol.2011; 209: 261-272.

[15] Schomburg L, Köhrle J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol. Nutr. Food Res. 2009; 52: 1235-1246.

[16] Dentice M, Salvatore D. Deiodinases: the balance of thyroid hormone: local impact of thyroid hormone inactivation. J. Endocrinol. 2011; 209: 273-282.

[17] Williams GR, Bassett JH. Deiodinases: the balance of thyroid hormone: local control of thyroid hormone action: role of type 2 deiodinase. J. Endocrinol. 2011; 209: 261-272.

[18] E. Lubos, J. Loscalzo, D.E. Handy. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2001; 15: 1957-1997.

[19] R Brigelius-Flohé R, Kipp A. Glutathione peroxidases in different stages of carcinogenesis. Biochim Biophys Acta. 2009; 1790: 1555-1568.

[20] Brigelius-Flohé R. Glutathione peroxidases and redox-regulated transcription factors. Biol. Chem. 2006; 387: 1329-1335.

[21] Oien DB, Moskovitz J. Selenium and the methionine sulfoxide reductase system. Molecules. 2009; 14: 2337-2344.

[22] Labunskyy VM, Hatfield DL, Gladyshev VN. The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum. IUBMB Life. 2007; 59: 1-5.

[23] Labunskyy VM, Ferguson AD, Fomenko DE, Chelliah Y, Hatfield DL, Gladyshev VN. A novel cysteine-rich domain of Sep15 mediates the interactionwith UDP-Glucose:glycoprotein glucosyl transferase. J. Biol. Chem. 2005; 280: 37839-37845.

[24] Kasaikina MV, Fomenko DE, Labunskyy VM, Lachke SA, Qiu W, Moncaster JA et al. Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice. J Biol Chem. 2011; 286(38):33203-12.

[25] Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL, Ginalski K, Grishin NV, Hatfield DL, Gladyshev VN. SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry. 2007; 46: 6871-6882.

[26] Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL et al. SelT, SelW, SelH, and Rdx12: Genomics and Molecular Insights into the Functions of Selenoproteins of a Novel Thioredoxin-like Family. Biochemistry. 2007; 46 (23):6871-6882.

[27] S Verma S, Hoffmann FW, Kumar M, Huang Z, Roe K, Nguyen-Wu E, Hashimoto AS, Hoffmann PR. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol. 2011; 186: 2127-2137.

[28] Reeves MA, Bellinger FP, Berry MJ. The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid Redox Signal. 2010; 12: 809-818.

[29] Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN. Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins, Antioxid. Redox Signal. 2010; 12: 839-849.

[30] Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T, Flanigan KM, Abramson JJ, Howard MT, Grunwald DJ. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc. Natl. 2008; 105: 12485-12490.

[31] Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN. Characterization of mammalian selenoproteomes. Science. 2003; 300: 1439-1443.

[32] Burk RF, Hill KE. Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta. 2009; 1790: 1441-1447.

[33] Lee BC, Dikiy A, Kim HY, Gladyshev VN. Functions and evolution of selenoprotein methionine sulfoxide reductases, Biochim Biophys Acta. 2009; 1790: 1471-1477.

[34] Zhao Y, Li H, Men LL, Huang RC, Zhou HC, Xing Q et al. Effects of selenoprotein S on oxidative injury in human endothelial cells. J Transl Med. 2013; 11 (1): 287.

[35] Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature. 2004; 429: 841-847

[36] Dudkiewicz M, Szczepinska T, Grynberg M, Pawłowski K. A Novel Protein Kinase-Like Domain in a Selenoprotein, Widespread in the Tree of Life. PlosOne. 2012; 7(2): 32138.

[37] Noh OJ, Park YH, Chung YW, Kim IY. Transcriptional regulation of selenoprotein W by MyoD during early skeletal muscle differentiation. J. Biol. Chem. 2010; 285: 40496-40507.

[38] Su D, Novoselov SV, Sun QA, Moustafa ME, Zhou Y, Oko R, Hatfield DL, Gladyshev VN. Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation. J. Biol. Chem. 2005; 280: 26491-26498.

[39] Turanov AA, Su D, Gladyshev VN. Characterization of alternative cytosolic forms and cellular targets of mouse mitochondrial thioredoxin reductase, J.Biol. Chem. 2006; 281: 22953-22963.

[40] Gupta N, DeMong LW, Banda S, Copeland PR. Reconstitution of selenocysteine incorporation reveals intrinsic regulation by SECIS elements. J Mol Biol. 2013 Jul 24; 425(14):2415-22.

[41] Kossinova O, Malygin A, Krol A, Karpova G. The SBP2 protein central to selenoprotein synthesis contacts the human ribosome at expansion segment 7L of the 28S rRNA. RNA. 2014 Jul; 20(7):1046-56.

[42] Xu XM, Mix H, Carlson BA et al. Evidence for Direct Roles of Two Additional Factors, SECp43 and Soluble Liver Antigen, in the Selenoprotein Synthesis Machinery. Journal of biological chemistry. 2005; 280 (50): 41568-41575.

[43] Ganichkin OM, Xu XM, Carlson BA et al. Structure and Catalytic Mechanism of eukaryotic Selenocysteine Synthase. Journal of biological chemistry. 2008; 283 (9): 5849-5865.

[44] Sherrer RL, Araiso Y, Aldag C et al. C-terminal domain of archaeal O-phosphoseryltRNA kinase displays large-scale motion to bind the 7-bp D-stem of archaeal tRNASec. Nucleic Acids Research. 2010; 39 (3): 1035-1041.